**Community Systems Thinking and Modeling Uncertainty** 2021 NARSC Presidential Address

Steven Deller



Department of Agricultural and Applied Economics Division of Extension University of Wisconsin-Madison

- Notions of the Engage Scholar
- In the spirit of Walter Isard, Community Economic Development is a truly interdisciplinary field of study and work.
- A Systems Thinking Approach
- "Everything Matters" and "Everything is Endogenous"
- Modeling Uncertainty



## A Systems Thinking Approach to Community Economic Development



Ŵ



Cornelia Flora Iowa State University

What are the assets available to the community?

What assets are strength that the community can build upon?

What assets are deficient that need investments?







Human capital: The skills and abilities of people, education, problem solving abilities, critical thinking.

How do we measure it?

Educational attainment?

Which measure?





Financial capital: The financial resources available to invest in community capacity building, to underwrite businesses development, to support civic and social entrepreneurship, and to accumulate wealth for future community development.

How do we measure it?

Number of banks?





Built capital: The infrastructure that supports the community, such as telecommunications (e.g., broadband), industrial parks, mainstreets, water and sewer systems, roads, etc.

Built capital is often a focus of community development efforts. Why? Tangible, easy to "see" the investments.

How do we measure it?

Broadband, roads, sewer, schools quality-capacity?





Ŵ

# Natural capital:

Those assets that abide in a location, including resources (land), amenities and natural beauty.

Extractive vs Non-Extractive uses of natural capital.

How do we measure it?

Climate, natural resources>?



Social capital: Reflects the connections among people and organizations, networks that enable the flow of information.

Bonding and Bridging Social Capital

How do we measure it?

Rupasingha, Goetz & Freshwater Social Capital Index?





Cultural Capital: Reflects the way people "know the world" and how to act within it. The dynamics of who we know and feel comfortable with, what heritages are valued. It influences what voices are heard and listened to and speaks to norms of acceptable behavior.

## How do we measure it?

Theaters, museums, arts venues, churches?



Political capital: The ability to influence standards, rules, regulations and their enforcement. Linkages (bridging social capital?) to other units of government and institutions.

How do we measure it?

Political heterogeneity or homogeneity, voting turn out, political organizations?

# "Everything Matters" and "Everything is Endogenous"

- Everything matters, everything is interconnected, hence everything is endogenous.
- The current "fad" of looking for the "right" instrumental variable is akin to jumping down the rabbit hole.
- If everything matters and we have multiple ways of measuring each factor, how do we proceed?
- Within the context of "modeling uncertainty".



One approach is to use principal components, or some variation, to combine several individual variables into a scalar measure of the relevant "capitals".

 $CO = f(\Sigma C C_j, PV)$ 

 $CO \equiv$  Some Community Outcome (e.g., growth, stability, resiliency, etc.)

 $CC_i \equiv$  Measures of *j* community capitals

 $PV \equiv$  Policy variables of interest.



TABLE 3

Land Economics • November 1998 • 74 (4): 541-56

### Measuring the Effects of Economic Diversity on Growth and Stability

### John E. Wagner and Steven C. Deller

ABSTRACT. The role of economic diversity in regional stability and growth is examined. Contrary to "conventional wisdom" the empirical litaratura has been unable to confirm the link he

Ŵ

an internal theoretical inconsistency of jointly pursuing economic growth and stability through the one policy approach of diver-

| TABLE 4                          |
|----------------------------------|
| EMPIRICAL RESULTS FOR THE GROWTH |
| AND STABILITY MODELS             |

|                                                | Models <sup>a</sup>             |                           |  |  |
|------------------------------------------------|---------------------------------|---------------------------|--|--|
| Variable                                       | Growth                          | Stability                 |  |  |
| Market                                         | 0.000465<br>(0.27) <sup>b</sup> | 0.010115<br>(0.37)        |  |  |
| Labor                                          | -0.006027<br>(3.20)             | 0.062298<br>(2.22)        |  |  |
| Tax                                            | 0.001034<br>(0.67)              | 0.006637<br>(0.27)        |  |  |
| Amenity                                        | 0.003097<br>(1.18)              | 0.058564<br>(1.43)        |  |  |
| Infrastructure                                 | 0.005126<br>(2.44)              | 0.093217<br>(3.03)        |  |  |
| Diversification Index                          | 0.018444<br>(2.15)              | -0.157680<br>(1.70)       |  |  |
| Constant                                       | -1.25360<br>(154.72)            | -2.12730<br>(19.87)       |  |  |
| Box-Cox Lambda<br>Adj R <sup>2</sup><br>F-stat | 0.6300<br>0.1694<br>2.5980      | 0.4100<br>0.2560<br>3.696 |  |  |

\* Measure of growth is the average annual growth rate in state per capita income and the measure for stability is the variance of the average annual unemployment rate for the period 1969-91.

<sup>b</sup> Number in parentheses is the absolute value of the t-statistic.

### PRINCIPAL COMPONENT EIGENVECTORS

| I KINCIPAL COMPONENT LIGENVECTORS                                             |             |
|-------------------------------------------------------------------------------|-------------|
| Variable Block                                                                | Eigenvector |
| Markets                                                                       |             |
| Income distribution (1980)                                                    | 0.373896    |
| Percent of the population that is nonwhite (1980)                             | 210187      |
| Population (1980)                                                             | 0.037399    |
| Growth in population (1969–91)                                                | 0.233518    |
| Per capita income (1980)                                                      | 0.052413    |
| Cost of living (1981)                                                         | 0.009444    |
| Percent of individuals below the poverty level (1979)                         | 0.001064    |
| Percent of children below the poverty level (1979)                            | -0.041890   |
| Percent of persons over 65 years of age (1979)                                | -0.406701   |
| Percent of persons living in the region their entire life (1976)              | 0.768177    |
| Cumulative Variance Explained                                                 | 90.85%      |
| Labor                                                                         |             |
| Right to work law (1982)                                                      | -0.131884   |
| Percent of labor force unionized (1980)                                       | 0.454602    |
| Percent of persons with a high school diploma (1980)                          | -0.411921   |
| Percent of persons with a college diploma (1980)                              | -0.250696   |
| Average teacher (K-12) salary (1980)                                          | 0.456971    |
| Number of doctors per 1,000 persons (1980)                                    | 0.216706    |
| Number of prisoners per 1,000 persons (1980)                                  | 0.381578    |
| Infant death rate (1980)                                                      | 0.376870    |
| Cumulative Variance Explained                                                 | 77.85%      |
| Taxes                                                                         |             |
| Corporate tax rate (1981)                                                     | -0.600410   |
| State sales tax rate (1981)                                                   | 0.659553    |
| Composite effective tax rate (1981)                                           | -0.126624   |
| Gasoline excise tax (1980)                                                    | 0.434125    |
| Cumulative Variance Explained                                                 | 67.45%      |
| Amenities                                                                     |             |
| Percent of the regional population classified as rural (1980)                 | 0.500109    |
| Percent of the region's surface area covered by lakes and rivers (1978)       | -0.275104   |
| Percent of the population with a fishing license (1978)                       | 0.564072    |
| Percent of the population with a hunting license (1978)                       | 0.596684    |
| Cumulative Variance Explained                                                 | 64.03%      |
| Infrastructure                                                                |             |
| Number of public airports per one million persons (1980)                      | 0.582335    |
| Number of private airports per one million persons (1980)                     | 0.517265    |
| Highway density measured as miles of four-lane highway per square mile (1980) | 0.627155    |
| Cumulative Variance Explained                                                 | 72.86%      |

### THE ROLE OF AMENITIES AND QUALITY OF LIFE IN RURAL ECONOMIC GROWTH

| VEN  |                                | Δ Population | $\Delta$ Employment | Δ Per Capita<br>Income |
|------|--------------------------------|--------------|---------------------|------------------------|
|      | Intercept                      | 52.174       | 74.102              | 152.007                |
|      |                                | (8.511)      | (5.730)             | (18.949)               |
| A s  | Population in 1985             | 0.00001      | 0.000.5             | -0.0001                |
| Five |                                | (0.245)      | (4.134)             | (-1.468)               |
| usir | Employment in 1985             | 0003         | -0.001              | 0.0006                 |
| inte |                                | (-2.714)     | (-3.967)            | (3.784)                |
| mite | Per capita income in 1985      | -0.0004      | -0.001              | -0.005                 |
|      | 1                              | (-2.425)     | (-3.833)            | (-24.466)              |
|      | Percent of nonwhite population | -0.049       | -0.080              | 0.192                  |
|      | research of non-state holi-    | (-2.043)     | (-1.593)            | (6.118)                |
|      | Percent of population under    | -0.508       | -0.965              | -0.170                 |
|      | seventeen                      | (-4.740)     | (-4.266)            | (-1.214)               |
|      | Bercent of population above    | -0.845       | -1 607              | _0.449                 |
|      | sixty five                     | (-8.063)     | (_8.081)            | (-3.637)               |
|      | Sixty-live                     | (-8.903)     | 0.0004              | (-3.037)               |
|      | Entropy income distribution    | -0.008       | 0.0004              | (1.229)                |
|      | index                          | (-4.880)     | (0.113)             | (1.228)                |
|      | Household with income          | 0.103        | -0.154              | -0.957                 |
|      | under poverty                  | (0.915)      | (-0.648)            | (-6.4990)              |
|      | Unemployment rate              | 0.182        | -0.490              | -0.550                 |
|      |                                | (2.021)      | (-2.581)            | (-4.671)               |
|      | Percent high school graduate   | 0.047        | 0.185               | -0.218                 |
|      |                                | (1.024)      | (1.908)             | (-3.629)               |
|      | Crime rate                     | 0.0005       | 0.001               | -0.0002                |
|      |                                | (3.018)      | (3.062)             | (-0.886)               |
|      | Number of physicians           | -0.004       | 0.012               | 0.042                  |
|      | 1,                             | (-0.970)     | (1.393)             | (7.572)                |
|      | Property tax                   | -0.040       | -0.049              | -0.061                 |
|      | rioperty tax                   | (-2.048)     | (-1.196)            | (-2.391)               |
|      | Government expenditure         | 0.00008      | -0.00004            | -0.0001                |
|      |                                | (3.822)      | (-0.910)            | (-1.995)               |
|      | Climate                        | 1.763        | 0.517               | 0.478                  |
| - (  |                                | (6.824)      | (0.948)             | (1.415)                |
|      | Developed recreational         | 0.541        | 1.308               | 1.018                  |
|      | infrastructure                 | (2.772)      | (3.174)             | (3.984)                |
|      | Land                           | 0.854        | 1 491               | -0.136                 |
|      | Lanu                           | (3.407)      | (2.820)             | (-0.414)               |
|      | Wotor                          | 0.422        | 0.046               | 1 154                  |
|      | water                          | (1.051)      | (0.000)             | (2.084)                |
|      | N.C.                           | (1.951)      | (0.099)             | (3.984)                |
|      | winter                         | 1.148        | 1.500               | (2.769)                |
|      | <b>\</b> .                     | (4.003)      | (2.578)             | (2.768)                |
|      | N=                             | 2243         | 2243                | 2243                   |
|      | F statistic =                  | 48.491       | 22.817              | 67.781                 |
|      | Adjusted $R^2 =$               | 0.287        | 0.156               | 0.3614                 |

W

| Table 4. | Principal | Component | Eigenvectors: | Water |
|----------|-----------|-----------|---------------|-------|
|----------|-----------|-----------|---------------|-------|

| Water Variables                                                            | Eigenvector |
|----------------------------------------------------------------------------|-------------|
| # Marinas                                                                  | 0.4219      |
| # Canoe outfitters, rental firms and raft trip firms                       | 0.3269      |
| # Diving instruction or tours and snorkel outfitters                       | 0.1908      |
| # Guides services                                                          | 0.4776      |
| # Fish camps, private or public fish lakes, piers and ponds                | 0.5482      |
| # American Whitewater Association total white water river miles            | 0.1184      |
| Designated Wild & Scenic River miles: Total 1993                           | 0.1367      |
| National Resources Inventory (NRI) acres in water bodies 2-40              |             |
| acres, $< 2$ acres, and $>= 40$ acres (lake or reservoir)                  | 0.1597      |
| NRI acres in streams $< 66'$ wide, $66-660'$ wide, and $>= 1/8$ miles wide | 0364        |
| NRI water body $\ge 40$ acres (bay, gulf, or estuary)                      | 0.2665      |
| NRI wetland acres                                                          | 0.0654      |
| NRI total river miles, outstanding value                                   | 0.1235      |
| Cumulative variance explained                                              | 16.84%      |

### Table 5. Principal Component Eigenvectors: Winter

| Winter Variables                                              | Eigenvector |
|---------------------------------------------------------------|-------------|
| Cross-country Ski Areas Association # Xcski firms, and public |             |
| XCski centers                                                 | 0.3496      |
| International Ski Service Skiable acreage                     | 0.3206      |
| Federal land acres in counties with $> 24''$ annual snowfall  | 0.5233      |
| Agricultural acres in counties with $> 24''$ annual snowfall  | 0.1381      |
| Acres of mountains in counties > 24" annual snowfall          | 0.5864      |
| Acres of forestland in counties $> 24''$ annual snowfall      | 0.3717      |
| Cumulative variance explained                                 | 35.93%      |

### Amer J Agr Econ. 2021;1-27.

### Rural broadband speeds and business startup

**TABLE 4** Base model, business startup rate 2014–2015 (spatial error estimator)

### Steven 1

| <sup>1</sup> Department    | Bayesian<br>posterior                                            | All<br>businesses | Construction   | Prof, sci<br>and tech | Health<br>and<br>soc serv | Accommodations<br>and food services | O<br>se |
|----------------------------|------------------------------------------------------------------|-------------------|----------------|-----------------------|---------------------------|-------------------------------------|---------|
| Economics, C               | estimates                                                        | SEM               | SEM tobit      | SEM tobit             | SEM tobit                 | SEM tobit                           | SI      |
| Economic De<br>Wisconsin-M | Intercept                                                        | 13.2017***        | 1.6183***      | 0.7791***             | 1.1797***                 | 1.0367***                           | r-1     |
| <sup>2</sup> Department    |                                                                  | (0.0001)          | (0.0001)       | (0.0001)              | (0.0001)                  | (0.0001)                            | (in     |
| Oklahoma Sta               | Lagged                                                           | 1.4587***         | 0.0180         | 0.0574*               | -0.0183                   | 0.0295                              | -in     |
| Okianoma, U                | Economic<br>Growth<br>Index                                      | (0.0001)          | (0.3406)       | (0.0599)              | (0.2973)                  | (0.2301)                            | (di     |
|                            | Economic                                                         | 0.0155            | -0.3499***     | -0.3896***            | -0.4739***                | $-0.4491^{***}$                     | -       |
|                            | Structure<br>Index                                               | (0.4650)          | (0.0001)       | (0.0001)              | (0.0001)                  | (0.0001)                            | (       |
|                            | Demographic                                                      | 0.1137            | $-0.0801^{**}$ | -0.0673**             | $-0.1020^{**}$            | -0.0425                             | -       |
|                            | Index                                                            | (0.2529)          | (0.0481)       | (0.0458)              | (0.0068)                  | (0.1715)                            | (       |
|                            | Social Capital                                                   | 3.1501***         | 0.6202***      | 0.3306***             | 0.3273***                 | 0.3840***                           |         |
|                            | Index                                                            | (0.0001)          | (0.0001)       | (0.0001)              | (0.0001)                  | (0.0001)                            | (       |
|                            | Asset Index                                                      | 1.7044***         | -0.1283**      | -0.2213***            | $-0.1847^{***}$           | $-0.1114^{**}$                      | -       |
|                            |                                                                  | (0.0001)          | (0.0003)       | (0.0001)              | (0.0001)                  | (0.0009)                            | (       |
|                            | Spatial                                                          | 0.2194**          | -0.0082        | -0.0028               | $-0.0111^{*}$             | 0.0108*                             | _       |
|                            | competition<br>of neighbors<br>Inclusive of<br>urban<br>counties | (0.0002)          | (0.1724)       | (0.3538)              | (0.0580)                  | (0.0937)                            | (       |
|                            | Spatial lambda ( $\lambda$ )                                     | 0.1879**          | 0.0619         | 0.3163***             | 0.1337**                  | 0.0563                              |         |
|                            |                                                                  | (0.0048)          | (0.1476)       | (0.0001)              | (0.0157)                  | (0.1694)                            | (       |

### TABLE 3 Socioeconomic and demographic control factors

|                                                                             | Eigenvector weight |
|-----------------------------------------------------------------------------|--------------------|
| Lagged Growth Index                                                         |                    |
| Percent change in population 2000–2014                                      | 0.5621             |
| Percent change in per capita income 2000-2014                               | 0.3824             |
| Percent change in employment 2000-2014                                      | 0.7334             |
| Variance explained                                                          | 0.5518             |
| Economic Structure Index                                                    |                    |
| Share of employment in proprietorships                                      | 0.7032             |
| Population to employment ratio                                              | 0.1214             |
| Economic Diversity Index                                                    | 0.7005             |
| Variance explained                                                          | 0.4582             |
| Demographic Index                                                           |                    |
| Age Index                                                                   | 0.7243             |
| Education Index                                                             | -0.6541            |
| Racial Diversity Index                                                      | 0.1435             |
| Population density                                                          | 0.1639             |
| Variance explained                                                          | 0.3383             |
| Asset Index                                                                 |                    |
| Median house value (\$000)                                                  | 0.6943             |
| Student debt interest payment per return with debt                          | 0.1464             |
| Banking concentration (per 10K population)                                  | 0.0748             |
| Number of small business bank loans (<\$100,000) per capita (1K population) | 0.7006             |
| Variance explained                                                          | 0.4066             |

Note: Marginal significance (p-values) in parentheses.

\*\*\*: Significant at 99.9%.

\*\*: Significant at 95.0%.

\*: Significant at 90.0%.

While the use of principal components is one approach, are there other approaches that tackle the issue of "everything matters" more directly?

$$CO = f(\Sigma C C_j, PV)$$

We "know" from theory and prior empirical work that  $CC_j$  can be vast and complicated, but we are not necessarily interested in how  $CC_j$  affects CO we are interested in our policy variables (*PV*). We only need to control for  $CC_j$ .

So, what is the "best model" for controlling for  $CC_i$ ?



Journal of Economic Literature 2020, 58(3), 644–719 https://doi.org/10.1257/jel.20191385

# Model Averaging and Its Use in Economics<sup>+</sup>

## Mark F. J. Steel\*

The method of model averaging has become an important tool to deal with model uncertainty, for example in situations where a large amount of different theories exist, as are common in economics. Model averaging is a natural and formal response to model uncertainty in a Bayesian framework, and most of the paper deals with Bayesian model averaging. The important role of the prior assumptions in these Bayesian procedures is highlighted. In addition, frequentist model averaging methods are also discussed. Numerical techniques to implement these methods are explained, and I point the reader to some freely available computational resources. The main focus is on

## Steel (2020, page 644)

"The discussion focuses mostly on uncertainty about covariate inclusion in regression models (normal linear regression and its extensions), which is arguably the most pervasive situation in economics."



<u>Imposition of some information criteria in order to select a</u> <u>single "best" model</u> regarded as the true model from which variable parameters are estimated.

Previous research uses determination criteria, such as changes in the equation F statistic,  $\overline{R}^2$  or Mallows'  $C_p$  statistic, which are tracked across alternative linear regressions for the purpose of identifying a "best" model.

Other potential criteria include the Amemiya criteria (PC), Akaike Information Criteria (AIC), Sawa Bayesian Information Criterion and/or the Schwarz Bayesian Information Criterion (BIC) as well as the Jeffreys-Bayes posterior odds ratio.



Steel (2020) identifies three groupings or classifications around modeling uncertainty within economics:

- Prediction,
- Identifying the factors or determinants driving economic processes, and
- Policy evaluation, where the focus is on assessing the consequences of certain policies.

$$CO = f(\Sigma C C_j, PV)$$



Brock, Durlauf, and West (2003) identify three main types of <u>uncertainty</u> that typically need to be considered:

*Theory uncertainty.* This reflects the situation where economists disagree over fundamental aspects of the economy....

Specification uncertainty. This type of uncertainty is about how the various theories that are considered will be implemented, in terms of how they are translated into specific models.

Heterogeneity uncertainty. This relates to model assumptions regarding different observations. Is the same model appropriate for all, or should the models include differences that are designed to accommodate observational heterogeneity? (GWR anybody?)



Steel (2020, p650) "In line with probability theory, the formal Bayesian response to dealing with uncertainty is to average. When dealing with parameter uncertainty, this involves averaging over parameter values with the posterior distribution of that parameter in order to get the predictive distribution."

The American Economic Review Vol. 87, No. 2, Papers and Proceedings of the Hundred and Fourth Annual Meeting of the American Economic Association (May, 1997), pp. 178-183 (6 pages)

### I Just Ran Two Million Regressions

By XAVIER X. SALA-I-MARTIN\*

Following the seminal work of Robert Barro (1991), the recent empirical literature on economic growth has identified a substantial number of variables that are partially correlated with the rate of economic growth. The basic An initial answer to this question was given by Ross Levine and David Renelt (1992).<sup>1</sup> They applied Edward Leamer's (1985) *extreme-bounds test* to identify "robust" empirical relations in the economic growth

$$\hat{\beta}_z = \sum_{j=1}^M \omega_{zj} \beta_{zj}$$

$$\omega_{zi} = \frac{L_{zj}}{\sum_{i=1}^{M} L_{zi}}$$

 $L_{zj}$  is the log likelihood of specific model.

|                | β <sub>1</sub> | β <sub>2</sub> | β <sub>3</sub> |
|----------------|----------------|----------------|----------------|
| M <sub>1</sub> | 1              | 1              | 1              |
| M <sub>2</sub> | 0              | 1              | 1              |
| M <sub>3</sub> | 0              | 0              | 1              |
| M <sub>4</sub> | 1              | 1              | 0              |
| M <sub>5</sub> | 1              | 0              | 0              |
| M <sub>6</sub> | 0              | 1              | 0              |
| M <sub>7</sub> | 1              | 0              | 1              |
| M <sub>8</sub> | 0              | 0              | 0              |

 $\hat{\beta}_z = \sum_{j=1}^M \omega_{zj} \beta_{zj}$ 

$$\omega_{zi} = \frac{L_{zj}}{\sum_{i=1}^{M} L_{zi}}$$

The full model space *M* (possible combinations) is  $2^{K}$ , if, for example if *K*=10, then the full model space has a dimension of 1,024.

$$\hat{\beta}_z = \sum_{j=1}^M \omega_{zj} \beta_{zj}$$

$$\omega_{zi} = \frac{L_{zj}}{\sum_{i=1}^{M} L_{zi}}$$

This approach within the model averaging literature could be linked to the "frequentist model averaging (FMA)" literature. Here many alternative weighting schemes are offered: Mallows'  $C_p$ statistic, Amemiya criteria (PC), Akaike Information Criteria (AIC), Sawa Bayesian Information Criterion and/or the Schwarz Bayesian Information Criterion (BIC) as well as the Jeffreys-Bayes posterior odds ratio.



While the "frequentist model averaging (FMA)" is slowing gaining some traction in economics because no priors on the distribution is required and the corresponding estimators are totally determined by data.

The weakness is that there is no theoretical justification for the particular weighting scheme.

While the FMA approach is gaining some traction, there has been an enormous literature on the use of the Bayesian Model Averaging (BMA) approach where the uncertainty on model is considered by setting a prior probability to each candidate model.



Suppose that there is a set of models all of which may be "reasonable" based on the theory for estimating  $\theta$  from a given data set *y*. Suppose further that a particular parameter  $\theta$  has a common interpretation across all possible models  $M_1, \dots, M_k$ .

Instead of using one single model for making inferences about  $\beta$ , <u>Bayesian Model Averaging</u> constructs  $\pi(\beta|y)$ , the posterior density of  $\beta$  given the data and is not conditional on any specific model ( $M_i$ ).



Given the Bayes formula, BMA starts by specifying

- prior probabilities  $P(M_i)$  for all models  $M_1, \ldots, M_k$  under consideration,
- prior densities  $\pi(\beta_i | M_i)$  for all parameters  $\beta_i$  of the model  $M_i$ .

Given the prior information on the parameters for a given model, the integrated likelihood  $(L_{n,j})$  of model  $M_j$  is given by

$$\gamma_{n,j}(y) = \int L_{n,j}(y,\beta_j) \pi(\beta_j | M_j) d\beta_j.$$



Here  $\gamma_{n,j}(y)$  is also the marginal density of the observed data. Using the Bayes theorem, the posterior density of the model is obtained as

$$P(M_j|y) = \frac{P(M_j)\gamma_{n,j}(y)}{\sum_{j'=1}^k P(M_{j'})\gamma_{n,j'}(y)}$$

Notice the overlap here between the FMA and BMA....

$$\omega_{zi} = \frac{L_{zj}}{\sum_{i=1}^{M} L_{zi}}$$



The posterior inference is based on the models visited by the Markov chain instead of on the complete model space which is untraceable given a large *K*.

For example, Heather Stephens and I are looking at the drivers of labor force participation rates across four age generations. We look at 43 different variables. Based on our use of BMA the full model space  $\mathcal{M}$  is  $2^{K}$ , specifically *K*=43 the full model space has a dimension of 8,796,093,022,208. Given that we explore 4 different generational age cohorts of people, and each has a model space of almost 8.8 trillion possible combinations.....

Sala-I-Martin's "I just ran one million regressions" I laugh at your trivial modeling space!



The posterior inference is based on the models visited by the Markov chain instead of on the complete model space which is untraceable given a large K.

We can more formally define a neighborhood nbd(M) for each  $M \in \mathcal{M}$  (the set of all possible models). From there we can define a transition matrix q by setting  $q(M \to M') = 0 \forall M' \notin nbd(M)$  and  $q(M \to M') \neq 0 \forall M' \in nbd(M)$ . If the chain is currently in state M, we can proceed by drawing M' from  $q(M \to M')$ .

*M*' is accepted with probability

$$\min\{1, \frac{P(M'|y)}{P(M|y)}\}$$





Figure 1. Total Number of Citations to Papers with Topic "Model Averaging" over Years 1989-2018

*Note:* Papers in economics or statistics journals with at least 250 citations are indicated by vertical lines proportional to the number of citations received.

Source: Web of Science, January 29, 2019.

A Google Scholar search of ["Bayesian model averaging" economics] yielded 14,000 total cites and about 6,600 since 2017.



## Bayesian Model Averaging for Spatial Econometric Models

### James P. LeSage,<sup>1</sup> Olivier Parent<sup>2</sup>

<sup>1</sup>McCoy Endowed Chair of Urban and Regional Economics, McCoy College of Business Administration, Department of Finance and Economics, Texas State University—San Marcos, San Marcos, TX, <sup>2</sup>Department of Economics, University of Cincinnati, Cincinnati, OH

We extend the literature on Bayesian model comparison for ordinary least-squares regression models to include spatial autoregressive and spatial error models. Our focus is on comparing models that consist of different matrices of explanatory variables. A Markov Chain Monte Carlo model composition methodology labeled MC<sup>3</sup> by Madigan and York is developed for two types of spatial econometric models that are fre-

$$y = \alpha \iota_n + \rho W y + X_k \beta_k + \varepsilon$$

 $y = \alpha \iota_n + X_k \beta_k + \varepsilon, \quad \varepsilon = \rho W \varepsilon + u, \quad u \sim N(0, \sigma^2 I)$ 

|                       | ρ | β <sub>1</sub> | <b>β</b> <sub>2</sub> | β <sub>3</sub> |
|-----------------------|---|----------------|-----------------------|----------------|
| $M_1$                 | 1 | 1              | 1                     | 1              |
| M <sub>2</sub>        | 1 | 0              | 1                     | 1              |
| <b>M</b> <sub>3</sub> | 1 | 0              | 0                     | 1              |
| $M_4$                 | 1 | 1              | 1                     | 0              |
| $M_5$                 | 1 | 1              | 0                     | 0              |
| $M_6$                 | 1 | 0              | 1                     | 0              |
| M <sub>7</sub>        | 1 | 1              | 0                     | 1              |
| M <sub>8</sub>        | 1 | 0              | 0                     | 0              |

$$y = \alpha \iota_n + \rho W y + X_k \beta_k + \varepsilon$$



Lesage and Parent (2007) offer three selection criteria to determine the important factors:

- The presence of the variable in the "top model" or model that maximizes *P*(*M<sub>j</sub>*)
- The frequency of the variable in the "top ten models".
- The posterior probability of the individual variable  $\pi(\theta_j | M_j)$

| Labor Force Participation Rate: SBMA_SAR Core Model                      |        |     |           |
|--------------------------------------------------------------------------|--------|-----|-----------|
| Age 55+ Baby Boomers                                                     | Vprob  | Тор | Тор<br>10 |
| Change in Employment 2000 to 2016                                        | 0.0522 | 0   | 0         |
| Change in Populaiton 2000 to 2016                                        | 0.9667 | 1   | 10        |
| Population to Employment Ratio 2016                                      | 0.9652 | 1   | 10        |
| Percent of Employment in Farming 2016                                    | 0.9841 | 1   | 10        |
| Percent of Employment in Manufacturing 2016                              | 0.1364 | 0   | 1         |
| Percent of Employment in Health Care and Social Services 2016            | 0.6148 | 0   | 7         |
| Percent of Employment in Accommodations and Food Services 2016           | 0.9576 | 1   | 10        |
| Percent of Employment in Government 2016                                 | 0.9067 | 1   | 10        |
| Unemployment Rate 2011                                                   | 0.7683 | 0   | 9         |
| Unemployment Rate 2016                                                   | 0.5027 | 1   | 4         |
| Percent Black or African American                                        | 0.2460 | 0   | 2         |
| Percent Other Minority (non-white, non-black)                            | 0.1280 | 0   | 0         |
| Percent those Age 25 and Over with a High School Diploma (including GED) | 0.8023 | 1   | 8         |
| Percent those Age 25 and Over with Some College, No Degree               | 0.0549 | 0   | 0         |
| Percent those Age 25 and Over with Bachelor's Degree                     | 0.9678 | 1   | 10        |
| Percent of the Population Living in a Rural Place                        | 0.0569 | 0   | 0         |
| Population Density (sqr mile)                                            | 0.7671 | 1   | 9         |
| Percent of Male Population Under Age 18                                  | 0.9654 | 1   | 10        |
| Percent of the Male Population 65 Years and Older                        | 0.2024 | 0   | 3         |
| Percent of the Female Population Age 0-25                                | 0.3014 | 0   | 1         |
| Percent of the Female Population 65 Years and Older                      | 0.8165 | 1   | 7         |
| Percent of the Population With an Ambulatory Difficulty                  | 0.9383 | 1   | 10        |
|                                                                          |        |     |           |

Note, we are moving away from the "pure" averaging approach here as was done by Sala-I-Martin toward using the results to variable identification.



# Regional income inequality: a link to women-owned businesses

Tessa Conroy · Steven Deller 🕞 · Philip Watson

Accepted: 18 June 2019 /Published online: 9 August 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract We assess how women-owned and operated businesses relate to income inequality at the community level. Using U.S. county-level data within the framework of modeling uncertainty, we employ a spatial Bayesian model averaging approach to identify which also found meaningful differences in the underlying control variable across our three measures of income inequality. Only a handful of control variables, such as the unemployment rate, rates of college education, and housing costs, are consistent predictors of income incompliant.



## Three-part question:

How does the concentration of women business owners impact community income inequality?

What are the relevant control variables that we need to account for?

This is an example of Durlauf's policy evaluation, where the focus is on assessing the consequences of certain policies. The "policy" is women entrepreneurs. Are the results sensitive to different measures of income inequality?

Ŵ

|                                                                                       | Gini                   |              |                     | Theil                    |              | Mean t               | Mean to Median Ratio     |              |                      |
|---------------------------------------------------------------------------------------|------------------------|--------------|---------------------|--------------------------|--------------|----------------------|--------------------------|--------------|----------------------|
|                                                                                       | Poster<br>ior<br>Proba | Top<br>Model | Top<br>Ten<br>Model | Posterior<br>Probability | Top<br>Model | Top<br>Ten<br>Models | Posterior<br>Probability | Top<br>Model | Top<br>Ten<br>Models |
| Percent Of Housing Renter-Occupied                                                    | 0.9816                 | 1            |                     | 0.9633                   | 1            | 10                   | 0.9797                   | 1            | 10                   |
| Renter-Occupied Housing - Median (\$000)                                              | 0.9629                 | 1            | 10                  | 0.9817                   | -            | . 10                 | 0.9581                   | -            | . 10                 |
| Percent of Population Speak English Less Than "Very Well" (5 years of age and over)   | 0.2901                 | 0            | 0                   | 0.5505                   | 0            | ) 5                  | 0.0634                   | 0            | 0                    |
| Percent of Population 25 years and Over - 9th to 12th grade, No Diploma               | 0.1800                 | 0            | 0                   | 0.7884                   | 1            | . 9                  | 0.1238                   | 0            | 0                    |
| Percent of Population 25 years and Over - High School Graduate (includes equivalency) | 0.9612                 | 1            | 10                  | 0.9605                   | 1            | . 10                 | 0.9567                   | 1            | . 10                 |
| Percent of Population 25 years and Over - Some College, No Degree                     | 0.9628                 | 1            | 10                  | 0.9388                   | 1            | . 10                 | 0.9576                   | 1            | . 10                 |
| Percent of Population 25 years and Over - Associate's Degree                          | 0.9633                 | 1            | 10                  | 0.3864                   | 0            | ) 2                  | 0.9582                   | 1            | . 10                 |
| Percent of Population 25 years and Over - Bachelor's Degree                           | 0.1714                 | 0            | 0                   | 0.1466                   | 0            | 0                    | 0.1823                   | 0            | 0                    |
| Percent of the Population African-American                                            | 0.9625                 | 1            | 10                  | 0.9625                   | 1            | . 10                 | 0.9592                   | 1            | . 10                 |
| Percent of the Population Latino                                                      | 0.1109                 | 0            | 0                   | 0.5813                   | 1            | . 5                  | 0.1084                   | 0            | 0                    |
| Ethnic Diversity Index                                                                | 0.4226                 | 0            | 1                   | 0.9614                   | 1            | . 10                 | 0.0716                   | 0            | 0                    |
| Percent of the Population Under Age 18                                                | 0.9630                 | 1            | 10                  | 0.9634                   | 1            | . 10                 | 0.9419                   | 1            | . 10                 |
| Percent of the Population Over Age 65                                                 | 0.0875                 | 0            | 0                   | 0.0878                   | 0            | 0                    | 0.2647                   | 0            | 0                    |
| Population Density                                                                    | 0.1465                 | 0            | 0                   | 0.0899                   | 0            | 0                    | 0.6612                   | 1            | . 10                 |
| Percent of Employment: Farming                                                        | 0.0964                 | 0            | 0                   | 0.1753                   | 0            | 0                    | 0.3591                   | 0            | ) 2                  |
| Percent of Employment: Manufacturing                                                  | 0.8780                 | 1            | 9                   | 0.5568                   | 1            | . 5                  | 0.7776                   | 1            | . 5                  |
| Percent of Employment: Health Care and Social Assitance                               | 0.9595                 | 1            | 10                  | 0.9621                   | 1            | . 10                 | 0.5573                   | 1            | . 8                  |
| Percent of Employment : Tourism Related                                               | 0.0913                 | 0            | 0                   | 0.0719                   | 0            | 0 (                  | 0.1236                   | 0            | 0                    |

Table 1: Spatial Bayesian Modeling Averaging for Income Distribution Measures

Ŵ

This tells us which, out of a wide range of potential control variables, are most consistent with the "underlying data generating process" and are there differences across three different measures of income inequality. What it does not tell us is the direction of these relationships.

#### Appendix Table A1: Full Specification Results for Gini Coefficient

| Gini                                                                                  | Total       | Total       |
|---------------------------------------------------------------------------------------|-------------|-------------|
| Percent Of Housing Renter-Occupied                                                    | 0.1665 ***  | 0.1597 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Renter-Occupied Housing - Median (\$000)                                              | -0.0426 *** | -0.0427 *** |
|                                                                                       | (0.0001)    | (0.0001)    |
| Percent of Population 25 years and Over - High School Graduate (includes equivalency) | -0.1883 *** | -0.1860 *** |
|                                                                                       | (0.0001)    | (0.0001)    |
| Percent of Population 25 years and Over - Some College, No Degree                     | -0.2078 *** | -0.2245 *** |
|                                                                                       | (0.0001)    | (0.0001)    |
| Percent of Population 25 years and Over - Associate's Degree                          | -0.2290 *** | -0.2242 *** |
|                                                                                       | (0.0001)    | (0.0001)    |
| Percent of the Population African-American                                            | 0.0544 ***  | 0.0515 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Percent of the Population Under Age 18                                                | -0.1473 *** | -0.1488 *** |
|                                                                                       | (0.0001)    | (0.0001)    |
| Percent of Employment: Health Care and Social Assistance                              | 0.0609 **   | 0.0695 **   |
|                                                                                       | (0.0066)    | (0.0016)    |
| Economic Diversity Index                                                              | 0.4946 ***  | 0.4770 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Share of Total Personal Income: Wages and Salary                                      | 0.0564 ***  | 0.0525 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Share of Total Personal Income: Proprietorships                                       | 0.0977 ***  | 0.1023 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Share of Total Personal Income: Dividends, Interest and Rental                        | 0.1823 ***  | 0.1794 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Share of Total Personal Income: Transfer Payments                                     | 0.1757 ***  | 0.1574 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
| Religious Adherent Rates                                                              | 0.0218 ***  | 0.0230 ***  |
|                                                                                       | (0.0001)    | (0.0001)    |
|                                                                                       |             |             |
| Share of Employment Women Owned Businesses                                            | 0.0556 **   | _           |
|                                                                                       | (0.0009)    |             |
| Share of Establishments Women Owned Businesses                                        |             | 0.1733 ***  |
|                                                                                       | _           | (0.0001)    |

Marginal Significance or p-values in parentheses.

\*\*\*: Significant at or above 99.9% level.

\*\*: Significant at 95.0% level.

\*: Significant at 90.0% level.

Using the SBMA approach we have high confidence that the model is "correctly" specified.

We have high confidence that the results on the control variables are reliable.

More women business owners, higher inequality.

→ "push" and "pull" of women starting businesses. Area of more refined research and significant policy implications.



### Economic diversity, unemployment and the Great Recession

Philip Watson<sup>a</sup>, Steven Deller<sup>b,\*</sup>

<sup>a</sup> Department of Agricultural Economics and Rural Sociology, 28D Agricultural Science Building, University of Idaho, 875 Perimeter Drive MS 2334, Moscow, ID 83844-2334, United States

<sup>b</sup> Department of Agricultural and Applied Economics, 515 Taylor Hall—427 Lorch Street, University of Wisconsin-Madison, Madison, WI 53706, United States

#### ARTICLE INFO

Article history: Received 4 May 2015 Received in revised form 21 November 2016

#### ABSTRACT

We revisit the relationship between economic diversity and unemployment in light of the economic shock of the Great Recession. Using U.S. county data we test the overall effect of increased industrial diversity on county level unemployment. Allowing for structured spatial spillovers across counties we find evidence supporting the notion that economic diversity within a given county is associated with lower levels of

CrossMark

This is an example of Durlauf's policy evaluation, where the focus is on assessing the consequences of certain policies. The "policy" is women entrepreneurs. Three-part question:

How does the economic diversity affect unemployment prior to, during and after the Great Recession ?

What are the relevant control variables that we need to account for, but more importantly do they vary over time?

Does the relationship between economic diversity and unemployment rats change over time?



### Table 2: Spatial Bayesian Model Averaging Posterior Results

|                                                           | Unemployment Rate |        |        |  |
|-----------------------------------------------------------|-------------------|--------|--------|--|
|                                                           | 2007              | 2010   | 2013   |  |
| Percent of the Population under Age 18                    | 0.9318            | 0.4459 | 0.7588 |  |
| Percent of the Population over Age 65                     | 0.9543            | 0.9715 | 0.9551 |  |
| Population Employment Ratio                               | 0.9572            | 0.9416 | 0.9553 |  |
| Per Capita Income Relative to US Average                  | 0.9553            | 0.9419 | 0.9550 |  |
| Percent of Employment in Goods Production (minus Farming) | 0.9554            | 0.9444 | 0.9558 |  |
| Percent of Employment in Service Production               | 0.9001            | 0.3789 | 0.9554 |  |
| Percent of Employment in Governments                      | 0.9539            | 0.4271 | 0.9556 |  |
| Percent of Households with Income below \$20K             | 0.9523            | 0.2537 | 0.9460 |  |
| Percent of Households with Income above \$150K            | 0.9563            | 0.9422 | 0.9548 |  |
| GINI Coefficient of Income Equality                       | 0.9577            | 0.9428 | 0.9555 |  |
| Per Capita Income from Transfer Payments                  | 0.9551            | 0.9427 | 0.9540 |  |
| Per Capita Income from Dividends, Interest and Rent       | 0.9569            | 0.9407 | 0.9543 |  |
| Per Capita Proprietor Income                              | 0.9556            | 0.4653 | 0.9433 |  |
| Percent of the Population Latino                          | 0.9441            | 0.9424 | 0.9766 |  |
| Percent of the Population African American                | 0.9565            | 0.9411 | 0.9554 |  |
| Population Density                                        | 0.7882            | 0.4294 | 0.6952 |  |
| Expected Unemployment Rate                                | 0.9763            | 0.9490 | 0.9549 |  |

Some variables are consistently associated with unemployment rates over all three time periods.

A handful, such as percent of employment in the public sector and services sector, are inconsistent across the three time periods.

Some, such as population density, simply does not matter.



Table 3: Diversity and Great Recession Unemployment (total effect)

|                                                           | 2007        | 2010          | 2013          |
|-----------------------------------------------------------|-------------|---------------|---------------|
| Herfindalh Index (higher values more specialized)         | -0.13861    | 39.22800 **   | 14.01497      |
|                                                           | (0.988)     | (0.007)       | (0.253)       |
| Percent of the Population under Age 18                    | 4.82395 *   | 3.42799       | -3.85196      |
|                                                           | (0.098)     | (0.456)       | (0.325)       |
| Percent of the Population over Age 65                     | -3.55676    | -13.89941 **  | -14.70851 *** |
|                                                           | (0.277)     | (0.008)       | (0.001)       |
| Population Employment Ratio                               | 0.29088     | 1.81461 ***   | 1.51402 ***   |
|                                                           | (0.204)     | (0.001)       | (0.001)       |
| Per Capita Income Relative to US Average                  | -2.68578 *  | -11.39457 *** | -7.17084 ***  |
|                                                           | (0.067)     | (0.001)       | (0.001)       |
| Percent of Employment in Goods Production (minus Farming) | 2.13880     | 15.33341 ***  | 9.68980 ***   |
|                                                           | (0.148)     | (0.001)       | (0.001)       |
| Percent of Employment in Service Production               | 4.02951 **  | 8.76709 ***   | 9.99082 ***   |
|                                                           | (0.008)     | (0.001)       | (0.001)       |
| Percent of Employment in Governments                      | -0.39968    | 1.35951       | 4.17615 *     |
|                                                           | (0.820)     | (0.625)       | (0.092)       |
| Percent of Households with Income below \$20K             | -1.31063    | -9.07596 *    | 1.66861       |
|                                                           | (0.691)     | (0.077)       | (0.710)       |
| Percent of Households with Income above \$150K            | 7.19975     | 26.90816 *    | 28.76415 **   |
|                                                           | (0.390)     | (0.052)       | (0.018)       |
| GINI Coefficient of Income Equality                       | -5.04035    | -7.21488      | -11.15642 *   |
|                                                           | (0.249)     | (0.287)       | (0.065)       |
| Per Capita Income from Transfer Payments                  | 0.58164 *** | 0.81835 ***   | 0.75356 ***   |
|                                                           | (0.001)     | (0.001)       | (0.001)       |
| Per Capita Income from Dividends, Interest and Rent       | -0.03183    | 0.59718 ***   | 0.29669 **    |
|                                                           | (0.667)     | (0.001)       | (0.004)       |
| Per Capita Proprietor Income                              | 0.04841     | 0.05647       | 0.10841       |
|                                                           | (0.331)     | (0.462)       | (0.110)       |
| Percent of the Population Latino                          | -0.54741    | 2.71071 **    | 1.70283 **    |
|                                                           | (0.350)     | (0.004)       | (0.045)       |
| Percent of the Population African American                | 0.30035     | 1.52044 *     | 2.04341 **    |
|                                                           | (0.552)     | (0.058)       | (0.003)       |
| Population Density                                        | -0.00002    | -0.00005      | -0.00001      |
|                                                           | (0.751)     | (0.649)       | (0.975)       |
| Expected Unemployment Rate                                | 0.43112 *** | 0.73995 ***   | 0.55258 ***   |
|                                                           | (0.001)     | (0.001)       | (0.001)       |

We kept all the variables in this estimation of the full model to explore how well the SAR estimation lined up with the SBMA results:

They largely agree.

For example, population density.

Marginal significance in parentheses.



\*\*\*

Significant at 90.0% level.

| Table 6 - Regression Results Herfindalh Index | K |
|-----------------------------------------------|---|
|-----------------------------------------------|---|

| Dependent Variable     | Direct      | Indirect    | Total       |
|------------------------|-------------|-------------|-------------|
| Unemployment Rate 2007 | 3.56805 *   | -3.70666    | -0.13861    |
|                        | (0.051)     | (0.655)     | (0.988)     |
| Unemployment Rate 2008 | 5.72350 **  | 11.39095    | 17.11444 *  |
|                        | (0.002)     | (0.194)     | (0.082)     |
| Unemployment Rate 2009 | 8.11555 **  | 24.26320 *  | 32.37875 ** |
|                        | (0.003)     | (0.076)     | (0.033)     |
| Unemployment Rate 2010 | 10.49337 ** | 28.73464 ** | 39.22800 ** |
|                        | (0.002)     | (0.022)     | (0.007)     |
| Unemployment Rate 2011 | 10.34304 ** | 24.83259 ** | 35.17562 ** |
|                        | (0.002)     | (0.034)     | (0.010)     |
| Unemployment Rate 2012 | 8.72385 **  | 14.80207    | 23.52592 *  |
|                        | (0.002)     | (0.180)     | (0.063)     |
| Unemployment Rate 2013 | 7.97248 **  | 6.04249     | 14.01497    |
|                        | (0.004)     | (0.572)     | (0.253)     |
| Unemployment Rate 2014 | 7.64338 *** | 8.37360     | 16.01698 *  |
|                        | (0.001)     | (0.306)     | (0.081)     |

Control variable results supressed.

Marginal significance or p-values in parentheses.

\*\*\*: Significant at 99.9% level.

\*\* : Significant at 95.0% level.

\* : Significant at 90.0% level.

Economic diversity within a county (direct effects) is consistently linked to unemployment rates prior to, during and after the Great Recession.

The effect appears to be the strongest in the "recovery" period.

The spillover effects (indirect) is only relevant in the immediate recovery years.



Some current examples of on-going work using SBMA:

Labor force participation rates with Heather Stephens (43. Measurements & Methods Thursday | 4:00 pm-6:00 pm | Mt Wilson)

What are the community characteristics associated with COVID-19 death and infection rates (Stephan Goetz)



Community Characteristics of COVID-19 Death/Infection Rates Two-part question:

(1) from a wide range of potential community characteristics which ones are most consistent with the underlying data generating process,

(2) does social capital matter and if so what elements of social capital?



Community Characteristics of COVID-19 Death/Infection Rates

Steel's (2020) three broad areas:

- Prediction,
- Identifying the factors or determinants driving economic processes, (or what should be in ΣCC<sub>i</sub>) and
- Policy evaluation, where the focus is on assessing the consequences of certain policies (or *PV* is social capital).

$$COVID-19 = CO = f(\Sigma C C_j, PV)$$



### Nine "Blocks" of Characteristics

Income Inequality Heath Access of Community Health Characteristics of Community Ethnic Characteristics of the Community Education Characteristics of the Community Age Characteristics of the Community Poverty Characteristics of the Community Economic Characteristics of the Community Social Capital Characteristics of the Community Consider income inequality:

Two parts: does income inequality help understand COVID-19 and out of the dozens of inequality measures, which is the "right" one to use?

Income Inequality

Gini Index Median to Mean HH Income Median to Mean Family Income Ratio Number of HH Income \$15k to \$150K Thiel Index



### Income Inequality

Gini Index Median to Mean HH Income Median to Mean Family Income Ratio Number of HH Income \$15k to \$150K Thiel Index

### Heath Access of Community Average Daily PM2.5 Percent of Populaiton Food Insecure Percent of Population Limited Access to Healthy Foods Percent of Population Uninsured Health Insurance Number of Population Uninsured Health Insurance Number of Hospitals per 10K Population Primary Care Physician per 10K Population Mental Health Providers per 10K Population Occupied Nursing Home Beds per 10K Population Number of Nursing Home Jobs per 10K Population

### Health Characteristics of Community

Percent of Adult Reporting Fair or Poor Health Average Number of Physically Unhealthy Days Average Number of Mentally Unhealthy Days Percent of Adults Smokers Percent of Adults with Obesity Percent of Adults Physically Inactive Percent of Adults Reporting Excessive Drinking Percent of Population Uninsured Life Expectancy Percent of Adults with Diabetes Ethnic Characteristics of the Community Percent of Population Speak Only English at Home Ethnic Diversity Index Percent of the Population Black Percent of Population Latino

Education Characteristics of the Community Education Index Percent Adults Age 25+ with Less Than a High School Degree Percent Adults Age 25+ with a College Degree (Ass, Bach, Grad)

### Age Characteristics of the Community

Age Index Percent of Population Age 65+ Percent of Population Age 85+ Median Age

#### Poverty Characteristics of the Community

Family Poverty Rate Youth Poverty Rate Poverty Rate Those Age 65+ Working Poverty Rate



Economic Charateristics of the Community Age 16+ labor Force Participation Rate Civilian Unemployment Rate Percent of Workers Commute via Carpool Percent of Worker Commute via Public Transportation Percent of Workers Worked from Home Percent of Workers Self-Employed Percent of Employment in Arts, Ent., Recreation, Accom, and Food Services HerfIndal Index of Economic Diversity Percent Households with Earnings Income Percent Households with Social Security Income Percent Households with Retirement Income Percent Households with Cash Public Assistance Income Percent Households with SNAP Benefits in the Past 12 Months Social Capital Charateristics of the Community Non-religious non-profit organizations p 1,000 Religious congregations p 1,000 Violent Crimes p 100,000 Membership Organizations p 1,000 Charitable contributions as share of AGI, middle-class itemizers presidential election GOP minus DEM differenceper\_point\_diff 2020 Census Response Rate

We have a total of 60 variables and if the full model space M (possible combinations) is  $2^{K}$ , K=60, the full model space is 1,152,921,504,606,850,000.



## We estimated each block of potential variables separately.

| Vprob                                     | Death  | Rate   | Infection | n Rate |
|-------------------------------------------|--------|--------|-----------|--------|
|                                           | SAR    | SEM    | SAR       | SEM    |
| Gini Index                                | 0.5498 | 0.1679 | 0.1693    | 0.1675 |
| Median to Mean HH Income                  | 0.2857 | 0.0855 | 0.1686    | 0.1673 |
| Median to Mean Family Income              | 0.2512 | 0.1677 | 0.0870    | 0.0835 |
| Ratio Number of HH Income \$15k to \$150K | 0.5925 | 0.0865 | 0.0843    | 0.1661 |
| Thiel Index                               | 0.3767 | 0.1677 | 0.1723    | 0.0822 |

County Level COVID death and infection rates

None of our income inequality measures appear to come into the model: income inequality does not appear to affect COVID death or infection rates.



County Level COVID death and infection rates

| Vprob                                                 | Death Rate |        | Infectior | n Rate |
|-------------------------------------------------------|------------|--------|-----------|--------|
|                                                       | SAR        | SEM    | SAR       | SEM    |
| Average Daily PM2.5                                   | 0.8836     | 0.8789 | 0.8908    | 0.9316 |
| Percent of Populaiton Food Insecure                   | 0.8930     | 0.9074 | 0.3990    | 0.8365 |
| Percent of Population Limited Access to Healthy Foods | 0.3294     | 0.4642 | 0.2273    | 0.7514 |
| Percent of Population Uninsured Health Insurance      | 0.8830     | 0.9522 | 0.7861    | 0.8655 |
| Number of Hospitals per 10K Population                | 0.9332     | 0.9041 | 0.1395    | 0.1881 |
| Number of Pharmacies per 10K Population               | 0.3487     | 0.7861 | 0.6055    | 0.4052 |
| Primary Care Physcician per 10K Population            | 0.4427     | 0.7084 | 0.1263    | 0.2463 |
| Mental Health Providers per 10K Population            | 0.7701     | 0.8125 | 0.1922    | 0.7041 |
| Occupied Nursing Home Beds per 10K Population         | 0.8848     | 0.9094 | 0.8018    | 0.5990 |
| Number of Nursing Home Jobs per 10K Population        | 0.5689     | 0.8962 | 0.1436    | 0.5675 |

- Note that the SAR and SEM specifications tend to "agree".
- None of these factors pass the posterior probability of the individual variable  $\pi(\theta_j | M_j)$  equal to or greater than 0.95. We dropped the threshold to 0.90.
- Note the differences between death and infection rates.
- What seems to matter, air pollution, health insurance, access to hospitals, nursing homes.

| County Leve | l COVID death and infection rate | es |
|-------------|----------------------------------|----|
|-------------|----------------------------------|----|

Ŵ

| Vprob                                          | Death Rate |        | Infectior | n Rate |
|------------------------------------------------|------------|--------|-----------|--------|
|                                                | SAR        | SEM    | SAR       | SEM    |
| Percent of Adult Reporting Fair or Poor Health | 0.9495     | 0.8792 | 0.8669    | 0.9332 |
| Average Number of Physically Unhealthy Days    | 0.8994     | 0.8822 | 0.4376    | 0.8499 |
| Average Number of Mentally Unhealthy Days      | 0.7607     | 0.2944 | 0.9336    | 0.8760 |
| Percent of Adults Smokers                      | 0.4521     | 0.3569 | 0.5706    | 0.2644 |
| Percent of Adults with Obesity                 | 0.7330     | 0.3238 | 0.8664    | 0.8807 |
| Percent of Adults Physically Inactive          | 0.7840     | 0.7954 | 0.2946    | 0.2456 |
| Percent of Adults Reporting Excessive Drinking | 0.9017     | 0.8131 | 0.2311    | 0.2593 |
| Percent of Population Uninsured                | 0.5424     | 0.5692 | 0.6464    | 0.8772 |
| Life Expectancy                                | 0.9012     | 0.9389 | 0.8661    | 0.8781 |
| Percent of Adults with Diabetes                | 0.8984     | 0.8821 | 0.6428    | 0.5296 |

- Somewhat surprising that health characteristics of the community population does not come into play to a larger extent.
- The posterior probability of the individual variable  $\pi(\theta_j | M_j)$  threshold, if we drop it to 0.85 or 0.80 the variables that enter the model jumps by a lot. Does a certain degree of arbitrariness enter the analysis? Are we back to changes in the equation F statistic,  $\bar{R}^2$ or Mallows'  $C_p$  Amemiya criteria (PC), Akaike Information Criteria (AIC), Sawa Bayesian Information Criterion and/or the Schwarz Bayesian Information Criterion (BIC)?

### County Level COVID death and infection rates

| Vprob                                                            | Death Rate |        | Infectio | n Rate |
|------------------------------------------------------------------|------------|--------|----------|--------|
|                                                                  | SAR        | SEM    | SAR      | SEM    |
| Non-religious non-profit organizations p 1,000                   | 0.8441     | 0.8465 | 0.93292  | 0.8304 |
| Religious congregations p 1,000                                  | 0.8483     | 0.8474 | 0.63048  | 0.4428 |
| Violent Crimes p 100,000                                         | 0.8962     | 0.8912 | 0.86176  | 0.9139 |
| Membership Organizations p 1,000                                 | 0.8471     | 0.9230 | 0.84566  | 0.4667 |
| Charitable contributions as share of AGI, middle-class itemizers | 0.9197     | 0.8495 | 0.86208  | 0.8302 |
| Presidential election GOP minus DEM Difference                   | 0.4777     | 0.5218 | 0.86286  | 0.7512 |
| 2020 Census Response Rate                                        | 0.5509     | 0.5369 | 0.86196  | 0.8271 |

Does social capital matter, or original question. Well, "it depends" even at the reduced 0.90 only a handful of measures come in. But if we drop to 0.80 a lot of these measures jump in.

Next step: select the relevant control variables (even at a reduced posterior probability threshold), then estimate using SAR and SEM with the social capital measures stepped in.



# **Concluding Comments**

- The study of community economic development is truly interdisciplinary (Isard's vision of regional science).
- A systems thinking approach helps contextualize the issues.
- Everything matters, we have multiple ways of measuring those "community capitals", everything is endogenous.
- The notion of "modeling uncertainty" comes to the forefront.
- Bayesian Model Averaging (BMA) is an avenue worthy of farther exploration.



# **Concluding Comments**

Examples of application of BMA in regional science:

Resource Curse: Peren & Braunfels. (2018) Energy Economics

Income Inequality: Hortas-Rico & Rios. (2019) Regional Studies

Government and Regional Resiliency: Rios & Gianmoena. (2020) *Journal* of Policy Modeling

Human Capital and Regional Growth: Cuaresma, et al. (2018) *Journal of Regional Science* 

Predicting Demand for Solar Power: Doubleday, et al. (2020) *IEEE Transactions on Sustainable Energy* 



# **Concluding Comments**

Example extensions of BMA:

Instrumental Variable BMA: Oueslati, Salanié, & Wu. (2019) *Journal of Economic Geography* 

Panel Data BMA: Desbordes, Koop, & Vicard. (2018) Economic Modelling

Stochastic Frontier BMA: Makieła & Mazur. (2020) Econometrics

Robust Bayesian Meta-analysis (RoBMA): Maier, Bartoš, & Wagenmakers. (forthcoming) *Psychological Methods* 





Steven Deller scdeller@wisc.edu

