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……preamble

• The key paper:

• The choice of Detroit & Bakersfield 

Tobler W (1970) A computer movie simulating urban growth in the Detroit region, 
Economic Geography 46: 234-240.

The choice of Detroit should be obvious as Tobler’s paper deals with the growth of 
Detroit. The choice of Bakersfield was a bit of a random pick. No 
reason……People in Bakersfield should not take this personally.
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Outline

• A few definitions
• Tobler’s law (1970)
• Spatial optimization

• The over-riding perspective of Operations Research in modeling spatial 
optimization problems (or why a Bakersfield-Detroit linkage)
• The p-median problem as an example

• My posit: Tobler’s law does make sense for Spatial Optimization, too

• A review of the background elements
• The classical transportation problem  (Hitchcock-Koopmans, 1941 & 1951)
• The capacitated facility location problem (Baumol & Wolfe, 1958)
• The general warehouse location Problem (GWLP) (Geoffrion, 1977)

• Bucking the trend
• Applying Tobler’s law in formulating the GWLP
• An application

• Summary & Research Directions
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Tobler (1970)

Computer movie simulating urban growth of Detroit, MI

• His stated objective: high success with a simple model.

• Tobler invoked:  "Everything is related to everything 
else, but near things are more related than distant 
things.“

• In his description, he stated: “The specific model used 
is thus very parochial and ignores most of the world.”

Indeed, why would Bakersfield have much to do with the 
growth of Detroit?  

2

It seems simple, let’s just ignore Bakersfield when 
modeling Detroit….. 
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Tobler’s law

"Everything is related to everything else, but near things are more 
related than distant things.“

• Often referred to as the first law of geography

• Is it really a law?.........Some people think not
• OK, it is isn’t perfect, but neither is Newton’s law of gravitational attraction
• This is not a new question & there is a lot of discourse on this aspect

• the interested reader is referred to a special issue of Annals of the AAG devoted to 
The First Law of Geography in 2004

• Others have offered up their versions of this law

examples include: 
• “Ecology”
• “Cognitive geography” 
• “Political behavior” 
• “Financial”

TBL: Tobler argued for simple, if it works. He 
argued for a way to reduce complexity based 
upon geographical proximity. 

6
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Spatial Optimization: a definition

• Spatial optimization involves identifying how land use 
and other activities should be arranged spatially in 
order to optimize efficiency or some other measure of 
goodness. 

• Examples include:
- Assignment and transportation problems (resource allocation 

across space)
- Districting, zonation, and region delineation 
- Facility location (hubs, warehouses, fire stations, etc.)
- Facility layout
- Network design with or without congestion
- Land use protection for species preservation 
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Roots of spatial optimization

• Economics: Weber 1909; Hotelling (1929); Kantorovich (1939); 
Koopmans (1951); Koopmans & Beckman (1957); Koopmans & 
Reiter(1951)

• Regional Science: Beckmann (1952); Isard (1956); Stevens (1961); 
Alonso (1960)

• Geography: von Thunen (1826); Christaller (1933); Garrison (1959); 
Alao (1970); Marble & Anderson(1972); ReVelle & Swain (1970) 

• Agriculture:  O’Heady and Candler (1958) 

• Operations Research: Vazsonyi (Weiszfeld (1937); Dantzig, 
Fulkerson, & Johnson (1954); Baumol & Wolf (1958); 
Balinski(1964),Manne (1964), Cooper (1962), Hakimi (1964), Armour et 
al. (1963); Ford and Fulkerson (1962)
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An example: The p-median  problem

• Locate p-facilities in such a way 
that the average distance of 
serving all demand is minimized
• Given n demand locations, m

potential facility sites
• Facilities will have the capacity to 

serve all comers
• All demand will be served by their 

closest facility

A 1,000 point problem with each point a 
feasible site as well as a place of demand 
has 1,000,000 variables and constraints.

9

Cooper (1963); Maranzana (1964); Hakimi(1965 & 1965); Teitz and Bart (1968); Vinod (1969); ReVelle and Swain (1970)

This is a classic problem introduced in the 1960’s and has been the subject of 
considerable research including efforts to reduce it size/simplify (just like Tobler)
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Simplifying: the p-median problem

• Aggregation: 

• Hillsman and Rhoda (1978)

• Goodchild (1979) 

• Densham, Fotheringham & Curtis (1995)

• Distance cutoffs

• Khumawala (1973)

• Hillsman (1978)

• Church & Sorensen (1995)

• Church (2008) BEAMR

• Garcia, Labbe, Marin (2010) Radius Formulation

• Variable consolidation/reductions

• Rosing, ReVelle & Rosing-Vogelaar (1979)

• Rosing and ReVelle (1997) Heuristic Concentration

• Church (2003) COBRA

10

Figure from Densham et al. (1995)

3

There have been notable success in reducing the size of a p-median problem when solved 
to optimality in the last few years, but this is the least complicated location-allocation 
problem. It is a beginning, but I think we can do more…………. 
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OR perspective: 

• Don’t simplify unless you can prove it works, which 
often means you have to solve the complete problem 
to prove the case, so why bother?

• Nothing should be left to chance, models must be 
complete, which implies that all potential interactions 
are included (near and far). 

• Spatial optimization models don’t treat near and far 
differently except with respect to cost or distance of 
travel in an objective function or in a covering context

Bottom Line: Tobler’s law has had virtually no impact on 
what spat opt people do, formulate, etc.   Or, in other 
words, we must keep the Detroit-Bakersfield link 

TBL: Tobler’s law has had virtually no impact on what spatial 
opt people do, formulate, etc.   In other words, we must keep 
all such Detroit-Bakersfield links in discrete spatial 
optimization problems to ensure optimality 

11

4



NARSC

Bakersfield

12NARSC

The OR, Spatial Optimization, View……………

Detroit as a possible warehouse location in serving any 
one of the 100 demand areas  (including Detroit itself)
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Bakersfield
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The Tobler View……………

Detroit as a possible warehouse location in serving demand areas that are 
within 1,000 miles: Is this enough to identify and confirm an optimal solution?
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My take: 

I would like to posit the following law for Spatial 
Optimization: 

• optimal service is more likely to be provided from a 
closer source than a farther one, 

• each route of a set of optimal multiple vehicle routes is 
more likely to consist of a series of stops that are closer 
together than further apart,

• and so on…….    THAT IS, I think , NEAR & FAR are concepts that

we can observe in optimal solutions and 
we can build in our models without loss of 

generality
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To do this, a bit of review
The classical transportation problem  (Hitchcock-Koopmans, 1941 & 1951)

The capacitated facility location problem (Balinski 1964; Manne 1964)

The general warehouse location Problem (GWLP) (Geoffrion 1977; Beasley, 1999)

My Objective is to show how we might distinguish between NEAR and FAR 
assignments for the general warehouse location Problem (GWLP) (Geoffrion
1977; Beasley, 1999); that is, Tobler’s law applied to a more complicated problem 
than the p-median problem……………………………
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CTP: as formulated and solved in the literature
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So, what do you do when  

18





















1

11

1,

11

1

  problem for the so,

  sources allfor    0  where

      

Demand fictitious Add

n

j

j

m

i

i

ni

n

j

j

m

i

in

ds

ic

dsd





n

j

j

m

i

i ds
11

Demand
1

Source 
1

Source
2

Source
3

Demand
2

Demand
3

Demand
4

1



NARSC

So, what do you do when  
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Solving the CTP

• Dantzig (1951)
• Transhipment problem of Orden (1956)
• Stepping stone method of Charnes and Cooper (1954)

-The method that is covered in most textbooks

• Min cost flow problem - Ford Fulkerson (1956)
• Out-of-Kilter Algorithm (Fulkerson, 1961)
• Primal-Dual Algorithm Ford and Fulkerson (1957)
• Primal Flow on a pure network (Glover, Karney, 

Klingman, 1972)
• Primal Flow on a generalized  network (Glover, 

Klingman, Stutz, 1973)
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These last 2 approaches can be considered Fast, Fast, Fast, on very large problems
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Let’s Transform the CTP
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A transformed CTP 
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Locating Source Facilities:
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The Capacitated Facility Location Problem
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3

“not very integer friendly”, 
unless we add more 
constraints: 

iij yt 

Incorporating the siting decision variable      into the CTP
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The General Warehouse 
Location Problem of Beasley 
(1999)

A general form, which 
represents: 
 the p-median problem, 
 the capacitated transportation 

location problem, 
 the simple plant location 

problem, and the
 capacitated fixed charge facility 

location problem.

But, this is a big model with a lot of 
variables: all linkages are 
represented, including Detroit to 
Bakersfield.

25

2



NARSC

Now, what about Treating Near and Far 
differently?
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Demand 2
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Source 1

Source 2

Source 3

Demand 3

Demand 4

We’ll call Near: the set of Kth closest facility sites for a given demand

We’ll call Far:    the set of sites that are not near, that is farther than the Kth closest

NEAR: sources 1 & 2 

FAR: source 3 
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Distinguish between near and far 
service…
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The basic idea is that demand j will be met, but beyond the Kj closest 
sites to demand j, we don’t know exactly from where………. 
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Implicit service  (FAR)
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Demand 1

Source 1

Source 2

Source 3

Demand 2

Demand 3

Demand 4

FAR: fictitious Source

Source m

Demand n

Depicting GWLP-T
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We need to ensure that enough 
capacity is built:

 
j i

iij ysd

If enough capacity is built, then we know that FAR assignments can 
be honored as well as NEAR assignments  
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This constraint is redundant for the GWLP: all feasible configurations 
in the original problem must have a capacity to serve all demands  
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Now, The model:   GWLP-T
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equal to transporting at the 
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(i.e. kj +1) 

These are ordered costs, c’ ,so 
that they match rkj allocation 
variables 
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The bottom line:

• Optimal objective  ZGWLP-T ≤    Optimal objective  ZGWLP

• That is, model GWLP-T provides a lower bound on 
GWLP

• The proof of this is quite simple & is in the paper

• When no Gj variables appear in the solution, the two 
objectives are equal and the solution to GWLP-T is 
feasible to GWLP s and equal to the lower bound, so 
must be optimal, EVEN WHEN SOLVING A SMALLER, 
INCOMPLETE MODEL
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So, how do you do that?

• Step 1: start with an estimate of Kj values

• Step 2: Set up and solve GWLP-T
• Are any Gj variables positive? If so expand the NEAR set 

for those demands and go back to step 1

• Are all  Gj variables equal to zero? If so stop, solution to 
GWLP-T is optimal to GWLP

Next a few results…….

32



NARSC

100 city data set: each city is a potential warehouse 
location as well as a demand point that needs to be served
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100 city data set: all 10,000 links between possible sites and demands
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To find and confirm optimality for the 5 warehouse problem, only 2, 215 links were necessary

35

76% reduction 
in variables!
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The optimal 5 warehouse solution: capacities and costs were the same for each of the 
possible 100 warehouse locations; supply assignments are depicted. 
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Links needed for Bakersfield and Detroit in finding the optimal 5 warehouse solution………   
Looks like Spatial Optimization doesn’t necessarily need a Detroit-Bakersfield link as well!
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Table 1: computational results when solving the GWLP-T model applied to the 100 city problem  

Problem 

number

Facility capacities Value of p Sum of values at optimality Percentage 

reduction

value for 

Bakersfield 

1 10,000 5 2,215 76% 5

2 10,000 6 2,075 78% 5

3 10,000 7 2,005 78% 5

4 12,000 4 3,380 65% 10

5 12,000 5 2,100 78% 5

6 12,000 6 2,065 78% 5

7 14,000 4 2,330 75% 5

8 14,000 5 1,845 80% 5

9 14,000 6 1,860 80% 5

10 16,000 3 4,790 51% 15

11 16,000 4 2,070 78% 5

12 16,000 5 1,845 80% 5

13 18,000 3 2,965 69% 10

14 18,000 4 2,070 78% 5

15 18,000 5 1,845 80% 5

16 24,000 2 5,075 48% 25

17 24,000 3 2,965 69% 10

18 24,000 4 2,070 78% 5

Total demand was 45,916.1; Initial  values were set at 5 and the increment was set at 5. 

jKjk jk
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Summary

• Tobler’s conceptual law can be used to help us in 
casting efficient approaches for many spatial 
optimization problems:
• P-median problem

• Fixed charge plant location

• Capacitated Plant Location problem

• Smaller models mean larger problems can be 
solved, a real benefit. 

• Heuristics could play a major role in determining 
starting values for  kj
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The challenge(s)

• Specifically, What about salesman tour/cover problems, 
more complex distribution systems, p-regions problem,  
p-compact regions problem, max p-regions, etc.
• All of these classic problems found in the Regional Science 

literature may well be amenable to new formulations based 
upon a spatial differences of NEAR and FAR, without 
compromising the search for an optimal solution.  

• Generally, are there concepts of Regional Science that 
have been used in one area and not in another which 
can have broad impact on what we do; improve the 
efficacy of our approaches, and help to be a more 
integrated science?
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