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¢ƻōƭŜǊΩǎ [ŀǿ ŀƴŘ {Ǉŀǘƛŀƭ 
Optimization: why 

Bakersfield?

or, more accurately: 

²Ƙȅ ȅƻǳ ŘƻƴΩǘ ƴŜŜŘ ŀ ƭƛƴƪ ōŜǘǿŜŜƴ 5ŜǘǊƻƛǘ ϧ .ŀƪŜǊǎŦƛŜƭŘ ƻǊ Řƻ ȅƻǳΚ

A more complete title:

NARSC

Note: This presentation was given as the 2015 NARSC Presidential Address, Portland, OR
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ΧΧǇǊŜŀƳōƭŜ

ÅThe key paper:

ÅThe choice of Detroit & Bakersfield 

Tobler W (1970) A computer movie simulating urban growth in the Detroit region, 
Economic Geography46: 234-240.

¢ƘŜ ŎƘƻƛŎŜ ƻŦ 5ŜǘǊƻƛǘ ǎƘƻǳƭŘ ōŜ ƻōǾƛƻǳǎ ŀǎ ¢ƻōƭŜǊΩǎ ǇŀǇŜǊ ŘŜŀƭǎ ǿƛǘƘ ǘƘŜ ƎǊƻǿǘƘ ƻŦ 
Detroit. The choice of Bakersfield was a bit of a random pick. No 
ǊŜŀǎƻƴΧΧtŜƻǇƭŜ ƛƴ .ŀƪŜǊǎŦƛŜƭŘ ǎƘƻǳƭŘ ƴƻǘ ǘŀƪŜ ǘƘƛǎ ǇŜǊǎƻƴŀƭƭȅΦ
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Outline

ÅA few definitions
Å¢ƻōƭŜǊΩǎ ƭŀǿ όмфтлύ
Å Spatial optimization

ÅThe over-riding perspective of Operations Research in modeling spatial 
optimization problems (or why a Bakersfield-Detroit linkage)
ÅThe p-median problem as an example

Åaȅ ǇƻǎƛǘΥ ¢ƻōƭŜǊΩǎ ƭŀǿ ŘƻŜǎ ƳŀƪŜ ǎŜƴǎŜ ŦƻǊ {Ǉŀǘƛŀƭ hǇǘƛƳƛȊŀǘƛƻƴΣ ǘƻƻ

ÅA review of the background elements
ÅThe classical transportation problem  (Hitchcock-Koopmans, 1941 & 1951)
ÅThe capacitated facility location problem (Baumol& Wolfe, 1958)
ÅThe general warehouse location Problem (GWLP) (Geoffrion, 1977)

ÅBucking the trend
Å!ǇǇƭȅƛƴƎ ¢ƻōƭŜǊΩǎ ƭŀǿ ƛƴ ŦƻǊƳǳƭŀǘƛƴƎ ǘƘŜ D²[t
ÅAn application

ÅSummary & Research Directions
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Tobler (1970)

Computer movie simulating urban growth of Detroit, MI

ÅHis stated objective: high success with a simple model.

ÅTobler invoked:  "Everything is related to everything 
else, but near things are more related than distant 
ǘƘƛƴƎǎΦά

ÅLƴ Ƙƛǎ ŘŜǎŎǊƛǇǘƛƻƴΣ ƘŜ ǎǘŀǘŜŘΥ ά¢ƘŜ ǎǇŜŎƛŦƛŎ model used 
is thus very parochial and ignores most of the worldΦέ

Indeed, why would Bakersfield have much to do with the 
growth of Detroit?  

2

Lǘ ǎŜŜƳǎ ǎƛƳǇƭŜΣ ƭŜǘΩǎ Ƨǳǎǘ ƛƎƴƻǊŜ .ŀƪŜǊǎŦƛŜƭŘ ǿƘŜƴ 
ƳƻŘŜƭƛƴƎ 5ŜǘǊƻƛǘΧΦΦ 
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¢ƻōƭŜǊΩǎ ƭŀǿ

"Everything is related to everything else, but near things are more 
related than distant thingsΦά

ÅOften referred to as the first law of geography

ÅIs it really a law?.........Some people think not
ÅhYΣ ƛǘ ƛǎ ƛǎƴΩǘ ǇŜǊŦŜŎǘΣ ōǳǘ ƴŜƛǘƘŜǊ ƛǎ bŜǿǘƻƴΩǎ ƭŀǿ ƻŦ ƎǊŀǾƛǘŀǘƛƻƴŀƭ ŀǘǘǊŀŎǘƛƻƴ
ÅThis is not a new question & there is a lot of discourse on this aspect

Å the interested reader is referred to a special issue of Annals of the AAG devoted to 
The First Law of Geography in 2004

ÅOthers have offered up their versions of this law

examples include: 
Åά9ŎƻƭƻƎȅέ
Åά/ƻƎƴƛǘƛǾŜ ƎŜƻƎǊŀǇƘȅέ 
ÅάtƻƭƛǘƛŎŀƭ ōŜƘŀǾƛƻǊέ 
ÅάCƛƴŀƴŎƛŀƭέ

TBL: Tobler argued for simple, if it works. He 
argued for a way to reduce complexity based 
upon geographical proximity. 

6
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Spatial Optimization: a definition

ÅSpatial optimization involves identifying how land use 
and other activities should be arranged spatially in 
order to optimize efficiency or some other measure of 
goodness. 

ÅExamples include:
- Assignment and transportation problems (resource allocation 

across space)
- Districting, zonation, and region delineation 
- Facility location (hubs, warehouses, fire stations, etc.)
- Facility layout
- Network design with or without congestion
- Land use protection for species preservation 

7



NARSCNARSC

Roots of spatial optimization

ÅEconomics:Weber 1909; Hotelling(1929); Kantorovich (1939); 
Koopmans (1951); Koopmans & Beckman (1957); Koopmans & 
Reiter(1951)

ÅRegional Science: Beckmann (1952); Isard (1956); Stevens (1961); 
Alonso (1960)

ÅGeography:von Thunen(1826); Christaller(1933); Garrison (1959); 
Alao(1970); Marble & Anderson(1972); ReVelle& Swain (1970) 

ÅAgriculture:  hΩIŜŀŘȅand Candler (1958) 

ÅOperations Research: Vazsonyi(Weiszfeld(1937); Dantzig, 
Fulkerson, & Johnson (1954); Baumol& Wolf (1958); 
Balinski(1964),Manne (1964), Cooper (1962), Hakimi(1964), Armouret 
al. (1963); Ford and Fulkerson (1962)

8
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An example: The p-median  problem

ÅLocate p-facilities in such a way 
that the average distance of 
serving all demand is minimized
ÅGiven n demand locations, m

potential facility sites
ÅFacilities will have the capacity to 

serve all comers
ÅAll demand will be served by their 

closest facility

A 1,000 point problem with each point a 
feasible site as well as a place of demand 
has 1,000,000 variables and constraints.

9

Cooper (1963); Maranzana(1964); Hakimi(1965 & 1965); Teitzand Bart (1968); Vinod (1969); ReVelleand Swain (1970)

¢Ƙƛǎ ƛǎ ŀ ŎƭŀǎǎƛŎ ǇǊƻōƭŜƳ ƛƴǘǊƻŘǳŎŜŘ ƛƴ ǘƘŜ мфслΩǎ ŀƴŘ Ƙŀǎ ōŜŜƴ ǘƘŜ ǎǳōƧŜŎǘ ƻŦ 
considerable research including efforts to reduce it size/simplify (just like Tobler)
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Simplifying: the p-median problem

Å Aggregation: 

Å Hillsmanand Rhoda (1978)

Å Goodchild (1979) 

Å Densham, Fotheringham & Curtis (1995)

Å Distance cutoffs

Å Khumawala(1973)

Å Hillsman(1978)

Å Church & Sorensen (1995)

Å Church (2008) BEAMR

Å Garcia, Labbe, Marin (2010) Radius Formulation

Å Variable consolidation/reductions

Å Rosing, ReVelle& Rosing-Vogelaar(1979)

Å Rosingand ReVelle(1997) Heuristic Concentration

Å Church (2003) COBRA

10

Figure from Densham et al. (1995)

3

There have been notable success in reducing the size of a p-median problem when solved 
to optimality in the last few years, but this is the least complicated location-allocation 
ǇǊƻōƭŜƳΦ Lǘ ƛǎ ŀ ōŜƎƛƴƴƛƴƎΣ ōǳǘ L ǘƘƛƴƪ ǿŜ Ŏŀƴ Řƻ ƳƻǊŜΧΧΧΧΦ 
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OR perspective: 

Å5ƻƴΩǘ ǎƛƳǇƭƛŦȅ ǳƴƭŜǎǎ ȅƻǳ Ŏŀƴ ǇǊƻǾŜ ƛǘ ǿƻǊƪǎΣ ǿƘƛŎƘ 
often means you have to solve the complete problem 
to prove the case, so why bother?
ÅNothing should be left to chance, models must be 

complete, which implies that all potential interactions 
are included (near and far). 
Å{Ǉŀǘƛŀƭ ƻǇǘƛƳƛȊŀǘƛƻƴ ƳƻŘŜƭǎ ŘƻƴΩǘ ǘǊŜŀǘ ƴŜŀǊ ŀƴŘ ŦŀǊ 

differently except with respect to cost or distance of 
travel in an objective function or in a covering context

.ƻǘǘƻƳ [ƛƴŜΥ ¢ƻōƭŜǊΩǎ law has had virtually no impact on 
what spat opt people do, formulate, etc.   Or, in other 
words, we must keep the Detroit-Bakersfield link 

TBL: ¢ƻōƭŜǊΩǎ ƭŀǿ Ƙŀǎ ƘŀŘ ǾƛǊǘǳŀƭƭȅ ƴƻ ƛƳǇŀŎǘ ƻƴ ǿƘŀǘ spatial 
opt people do, formulate, etc.   In other words, we must keep 
all such Detroit-Bakersfield links in discrete spatial 
optimization problems to ensure optimality 

11

4



NARSC

Bakersfield

12NARSC

¢ƘŜ hwΣ {Ǉŀǘƛŀƭ hǇǘƛƳƛȊŀǘƛƻƴΣ ±ƛŜǿΧΧΧΧΧ

Detroit as a possible warehouse location in serving any 
one of the 100 demand areas  (including Detroit itself)
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Bakersfield

13NARSC

¢ƘŜ ¢ƻōƭŜǊ ±ƛŜǿΧΧΧΧΧ

Detroit as a possible warehouse location in serving demand areas that are 
within 1,000 miles: Is this enough to identify and confirm an optimal solution?



NARSCNARSC

My take: 

I would like to posit the following law for Spatial 
Optimization: 
Åoptimal service is more likely to be provided from a 

closer source than a farther one, 

Åeach route of a set of optimal multiple vehicle routes is 
more likely to consist of a series of stops that are closer 
together than further apart,

ÅŀƴŘ ǎƻ ƻƴΧΧΦ    THAT IS, I think , NEAR & FAR are concepts that

we can observe in optimal solutions and 
we can build in our models without loss of 

generality

14
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To do this, a bit of review
The classical transportation problem  (Hitchcock-Koopmans, 1941 & 1951)

The capacitated facility location problem (Balinski1964; Manne 1964)

The general warehouse location Problem (GWLP) (Geoffrion1977; Beasley, 1999)

My Objective is to show how we might distinguish between NEAR and FAR 
assignments for the general warehouse location Problem (GWLP) (Geoffrion
1977; Beasley, 1999ύΤ ǘƘŀǘ ƛǎΣ ¢ƻōƭŜǊΩǎ ƭŀǿ ŀǇǇƭƛŜŘ ǘƻ ŀ ƳƻǊŜ ŎƻƳǇƭƛŎŀǘŜŘ ǇǊƻōƭŜƳ 
than the p-ƳŜŘƛŀƴ ǇǊƻōƭŜƳΧΧΧΧΧΧΧΧΧΧΧ

15
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CTP: as formulated and solved in the literature
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So, what do you do when  
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So, what do you do when  
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Solving the CTP

ÅDantzig(1951)
ÅTranshipmentproblem of Orden(1956)
ÅStepping stone method of Charnesand Cooper (1954)

-The method that is covered in most textbooks

ÅMin cost flow problem - Ford Fulkerson (1956)
ÅOut-of-Kilter Algorithm (Fulkerson, 1961)
ÅPrimal-Dual Algorithm Ford and Fulkerson (1957)
ÅPrimal Flow on a pure network (Glover, Karney, 

Klingman, 1972)
ÅPrimal Flow on a generalized  network (Glover, 

Klingman, Stutz, 1973)

20

These last 2 approaches can be considered Fast, Fast, Fast, on very large problems
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[ŜǘΩǎ ¢ǊŀƴǎŦƻǊƳ ǘƘŜ /¢t
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A transformed CTP 
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.ƛƎ ŘŜŀƭΣ ǎƻ ȅƻǳ ǎŀȅΧΧΧΧΦ
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Locating Source Facilities:
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The Capacitated Facility Location Problem
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3

άƴƻǘ ǾŜǊȅ ƛƴǘŜƎŜǊ ŦǊƛŜƴŘƭȅέΣ 
unless we add more 
constraints: 

iij yt ¢

Incorporating the siting decision variable      into the CTP
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The General Warehouse 
Location Problem of Beasley 
(1999)

A general form, which 
represents: 
Á the p-median problem, 
Á the capacitated transportation 

location problem, 
Á the simple plant location 

problem, and the
Á capacitated fixed charge facility 

location problem.

But, this is a big model with a lot of 
variables: all linkages are 
represented, including Detroit to 
Bakersfield.
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Now, what about Treating Near and Far 
differently?

26

Demand 2

Demand 1

Source 1

Source 2

Source 3

Demand 3

Demand 4

²ŜΩƭƭ Ŏŀƭƭ bŜŀǊΥ the set of Kth closest facility sites for a given demand

²ŜΩƭƭ Ŏŀƭƭ CŀǊΥ    the set of sites that are not near, that is farther than theKth closest

NEAR: sources 1 & 2 

FAR: source 3 
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Distinguish between near and far 
ǎŜǊǾƛŎŜΧ
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, 1 Our demand constraint 
can be rewritten as:

The basic idea is that demand j will be met, but beyond the Kj closest 
sites to demand jΣ ǿŜ ŘƻƴΩǘ ƪƴƻǿ ŜȄŀŎǘƭȅ ŦǊƻƳ ǿƘŜǊŜΧΧΧΦ 

Explicit service  (NEAR)

Implicit service  (FAR)
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Demand 1

Source 1

Source 2

Source 3

Demand 2

Demand 3

Demand 4

FAR: fictitious Source

Source m

Demand n

Depicting GWLP-T



NARSCNARSC

We need to ensure that enough 
capacity is built:

ä ä¢
j i

iij ysd

If enough capacity is built, then we know that FAR assignments can 
be honored as well as NEAR assignments  

29

This constraint is redundant for the GWLP: all feasible configurations 
in the original problem must have a capacity to serve all demands  
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Now, The model:   GWLP-T
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Note, the cost of serving  
demand from some FAR site is 
equal to transporting at the 
cost of the closest FAR site to j
(i.e. kj +1) 

These are ordered costs, cΩ,so 
that they match rkj allocation 
variables 
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The bottom line:

ÅOptimal objective  ZGWLP-T Җ    hǇǘƛƳŀƭ ƻōƧŜŎǘƛǾŜ  ZGWLP

ÅThat is, model GWLP-T provides a lower bound on 
GWLP

ÅThe proof of this is quite simple & is in the paper

ÅWhen no Gj variables appear in the solution, the two 
objectives are equal and the solution to GWLP-T is 
feasible to GWLP s and equal to the lower bound, so 
must be optimal, EVEN WHEN SOLVING A SMALLER, 
INCOMPLETE MODEL

31
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So, how do you do that?

ÅStep 1: start with an estimate of Kj values

ÅStep 2: Set up and solve GWLP-T
ÅAre any Gj variables positive? If so expand the NEAR set 

for those demands and go back to step 1

ÅAre all  Gj variables equal to zero? If so stop, solution to 
GWLP-T is optimal to GWLP

bŜȄǘ ŀ ŦŜǿ ǊŜǎǳƭǘǎΧΧΦ

32
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100 city data set: each city is a potential warehouse 
location as well as a demand point that needs to be served

33



NARSC

100 city data set: all 10,000 links between possible sites and demands

34


