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Optimizationivhy
Bakersfield?

or, more accurately:
2 Ke¢ @2dz R2y Qi ySSR | ftAy]l o0Si

Note: This presentation was given as the 2015 NARSC Presidential Address, Portland,
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AThe key paper:

ToblerW (1970)A computer movie simulating urban growth in the Detrmagion,
Economicseography6: 234240.

AThe choice of Detroit & Bakersfield

tKS OK2AOS 2F 5SUNRPAG aK2dAd R 0S 200A2dza | a
Detroit. The choice of Bakersfield was a bit of a random pick. No 5
NEBFaz2y XXt S2LXS Ay .| {1SNAFASEIR aK2dd R y2(
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Outline

A A few definitions
Ac20ft SNRa tl g omdpTno
A Spatial optimization
A The overriding perspective of Operations Research in modeling spatial
optimization problems (or why a Bakersfidhitroit linkage)

A Thep-median problem as an example
Aaeé LI2aArdy ¢26f SNQRa ¢ R2Sa YIS
A A review of the background elements

A The classical transportation problefitlitchcockikKoopmans, 1941 & 1951)

A The capacitated facility location problef@aumol& Wolfe, 1958)

A The general warehouse location Problem (GWEGRpffrion 1977)

A Bucking the trend
Al'LILX eAy3 ¢20f SNQa g Ay F2NNdzZ I GAYy 3
A An application

A Summary & Research Directions
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Tobler (1970)

Computer movie simulating urban growth of Detroit, Ml
AHis stated objective: higbuccessvith asimple model

ATobler invoked:"Everythings related to everything
else, but near things are more related than distant
U KAy 3da da

ALY KA A& RS&ONMRMLI A 2 yhadel Ksed &
IS thus veryparochial andgnores most of the world €

Indeed, why would Bakersfield have much to do with the
growth of Detroit?

LG aSSya aAyL} Sz € SiQal ad
Y 2 F“eéf)\ya 5SUNRPAGXDD
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IS related to everything else, but near things are more

"Everything

related than distant thing® &

A Oftenreferred toas thefirst law ofgeography
Als it really a law?......... Some people think not

Ahyx AG XA

AAY Qi
A This is not a new question & there is a lot of discourse on this aspect
A the interested reader is referred to a special issuéohals of the AAGevoted to

LISNFSOG =

The First Law of Geography in 2004
A Others have offered up their versions of this law

examples include:
Aaogdztz238¢
Aal 23yAlACL
Aat 2t A
AACAyl y

I @

TBL: Tobler argued for simple, if it works. H
argued for a way to reduce complexity base

upon geographical proximity.

VSAGI

<1
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Spatial Optimizatiorx definition

ASpatial optimization involves identifying how land use
and other activities should be arranged spatially in

order to optimize efficiency or some other measure of
goodness.

AExamples include:

- Assignment and transportation problems (resource allocation
across space)

Districting, zonation, and region delineation

Facility location (hubs, warehouses, fire stations, etc.)
Facility layout

Network design with or without congestion

Land use protection for species preservation
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Roots of spatial optimization

AEconomicsweber 1909Ho0telling(1929); Kantorovich (1939);
Koopmans (1951); Koopmans & Beckman (1957); Koopmans &

Reiter(195)

ARegional Scienceeckmann (1952): Isard (1956); Stevens (1961):
Alonso (1960)

AGeography\'/on Thunen(1826);Christaller(1933); Garrison (1959);
Alao(1970); Marble & Anderson(197ARgVelle& Swain (1970)

AAgriculture: h 1 Sand@andler (1958)

AOperations Researchazsony{weiszfeld1937):Dantzig
Fulkerson, & Johnson (1958aumol& Wolf (1958);
Balinsk{1964),Manne (1964), Cooper (19628kimi(1964) ,Armouret
al. (1963); Ford and Fulkerson (1962)
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An examplerhep-median problem

ALocatep-facilities in such a way
that the average distance of

serving all demand is minimized
AGivenn demand locationsm %
potentlal faC|I|ty S|tes

¢K)\a a | Oflaa)\O LJNEotSY )\yuNERdzOSR
con5|derable research including efforts to reduce it size/simplify (just like Tobler)

closest facility \ /F

A 1,000 point problem with each point a
feasible site as well as a place of demand

has 1,000,000 variables and constraints.
Weighted Distance: 2950.41

Cooper (1963)Maranzang1964);Hakim{1965 & 1965)Teitzand Bart (1968); Vinod (1969 eVelleand Swain (1970)
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Simplifyingthe pmedian problem

Location-
Allocation
solution

AN

There have been notable success in reducing the siz@-oh@dian problem when solvec
to optimality in the last few years, but this is the least complicated locaditation
LINPOESY® LO A& F 0SIAYYAYIAS o6dzi L GKAY]

T

Figure from Densham et al. (1995)

NARSC 10



OR perspective:

A2y Q0 AaAYLIX ATeée dzyf Saa & 2d:
often means you have to solve the complete problem
to prove the caseso why bother?

ANothing should be left to chance, models must be
complete, which implies that all potential interactions
are included (near and far).

AL LI GALFE 2LIGAYAT I GAZ2 Y2RS

differently except with respect to cost or distance of
travel in an objective function or in a covering context

TBLt20f SNXa ¢ KIF a KI Rspaial NI d:
opt people do, formulate, etc. In other words, we must keep
all such DetroHBakersfieldinks in discrete spatial

optimization problems to ensure optimality
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Detroit as a possible warehouse location in serving any
one of the 100 demand areas (including Detroit itself)
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Detroit as a possible warehouse location in serving demand areas that are
within 1,000 milesls this enough to identify and confirm an optimal solution?

NARSC 13



My take:

| would like to posit the following law for Spatial
Optimization:
Aoptimal service is more likely to be provided from a
closer source than a farther one,

Aeachroute of a set of optimal multiple vehicle routes is
more likely to consist of a series of stops that are closer
together than further apart,

Al VR &2 THAYIE Ktk , NEAR & FAR are concepts that

we can observe in optimal solutions and
we can build in our models without loss of
generality

NARSC 14



My Objective is to show how we might distinguish between NEAR and FAR
assignments for thgeneral warehouse location Problem (GWIG)dffrion
1977; Beasley, 1999T G KIF 0 A&z ¢20f SNXQRa g [I|L
thanthep-YSRA LY LINBOf SYXXXXXXXXXXX

To do this, a bit of review

Theclassical transportation problem (Hitchcae€kopmans, 1941 & 1951)
The capacitated facility location problefBalinskil964; Manne 1964)
The general warehouse location Problem (GWGRD(frion1977; Beasley, 1999)
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HitchcockkKoopmans, 1941 & 1951

Classical Transportation ProbleGTP

Minimize Z=g Q ¢

i=1 j=1

subject ta -
1) meetdemand .

m Source

ax 2d, foreachdemand | 1 Demand

i=1 5
2) donotoverallocgesupply Source

: 2 Demand

_a__1 x, ¢  foreachsourcei Source 3

) Vi ' ] Demand
3) non- negativityconstrains )

X; 2 0 for each andeachj

X; = thenumberof unitssuppliedromsourcei todemand |
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CTPés formulated and solved In the literature

Minimize Z=g Q ¢

i=1 j=1
subject ta —. :
) Thisis basedupon theassumptiol
1) meetdemand
m that:
a x =d, foreachdemand j m N
7 1
2) donotoveralloctesupply i3:.1$ ja:‘1 ’

ax =s foreachsourcei
j=1
3) non- negativityconstrainsg
X; 2 0 for each andeach]

¥X; = thenumberof unitssuppliedromsourcei todemand |
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So, what do you do Wherazs >zf5':t1dj

Add fictitious Demand

dn+1:é.$_é.dj

i=1 j=1

wherec .. =0 for allsourcesi

1,n+1

m n+1
so,for theproblemg s =q d,

i=1 j=1

NARSC
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So, what do you do Wherazs >§':t1dj

Add fictitious Demand

dn+1:é.$_é.dj

i=1 j=1

wherec .. =0 for allsourcesi

1,n+1

m n+1
so,for theproblemg s =q d,

i=1 j=1

NARSC

Demand
1
Source
1 Demand
2
Source
2 Demand
3
Source
3 Demand
4

Fictitious Demand
5
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Solving the CTP

ADantzig(1951)
ATranshipmenproblem ofOrden(1956)
AStepping stone method @@harnesand Cooper (1954)

-The method that is covered in most textbooks

AMin cost flow problem Ford Fulkerson (1956)
AOut-of-Kilter Algorithm (Fulkerson, 1961)
APrimalDual Algorithm Ford and Fulkerson (1957)

APrimal Flow on a pure network (Glovarney
Klingman 1972)

APrimal Flow on a 8eneralized network (Glover,
Klingman Stutz, 1973)

These last 2 approaches can be considered Fast, Fast, Fast, on very large problems

NARSC 20
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Minimize Z= a a c;d;t;

ij ]
i=1 j=1

subject ta

1) meetdemand
adt,=d Y §t =1 foreachdemand |
i=1 =1

2) donotoveralloc&esupply

adt ¢s foreachsourcei

j=1
3) non- negativityconstraing
Oc¢t; ¢1 for each andeach|

Define t; =N fractionof thedemandat | thatis suppliedfromi

i

NARSC
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A transformed CTP

t; = thefractionof thedemandat j thatis suppliedromsourcei

Minimize Z=3g q ¢di; Demand
i=1 j=1 1
subject ta Source
1) meetdemand 1 Demand
. _ 2
at; =1 foreachdemand | Source
2 5
2) donotoverallocée supply Dergand
n it f e _ Source
1 or eachsourcei
a dit; ¢35 3 Demand

j=1
3) non- negativityconstraing
O¢t; ¢1  foreach andeach]

4

A3 RSIf>X az
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Locating Source Facilities:

. gl if awarehouseslocatedatsitel
Define vy, =j _
i O, otherwise

f. = fixed chargdor developingafacility atsite i

Demand 1
f, y, =1  Source1l

Demand 2
f, y, =1 Source 2

Demand 3
0) Yy, =0  Source 3

Demand 4

NARSC
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The Capacitated Facility Location Problen

Incorporating the siting decision variabje

into the 4:

Minimize Z=3 a ¢ d;t; 4a fy
i=1 j=1 i=1

subject ta
1) meetdemand

at; =1 foreachdemand |j
=1

2) donotoverallocéesupply

adt ¢sy | foreachsourcei

j=1
3) non- negativityandintegerconstrains
O¢t, ¢1 foreach andeachj

y.i {01}  foreach

NARSC

Gy 2 i

@S NEB

unless we add more
constraints:

L ¢y

Ay

S
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. _hon .f:* The General Warehouse °
Minimize Z=g a ¢d;t;+a fy
A

1 jo1 Location Problem of Beasley
subject ta (1999)

1) meetdemand A general form, which

m
at =1 foreachdemand | represents:
i=1 A the p-median problem,
2) donotoverallocatesupply A the capacitated transportation
i ) location problem,
a dt, ¢sy foreachsourcei A the simple plant location
i=1 problem, and the

A capacitatedfixed charge facility

3) donotserve] from i unless isafacility location problem

t, ¢y foreach and|

But, this is a big model with a lot of

4) locateexactlyp- facilities variables: all linkages are

m represented, including Detroit to
ayi=0p Bakersfield.
i=1

5) non- negativityandintegerconstraing
0¢t, ¢1 foreachi andeachj y. I {01 foreach
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Now, what about Treating Near and Far
differently?

2 SQf f

2 SQf f

NARSC

Cthefsdt of B Slbséklfacilitysites for a given demand

GHe $ef of siids M are natear, that is farther than thé&th closest

NEAR: sources 1 &
Demand 1

FAR: source 3

Source 1

Demand 2
Source 2

Demand 3
Source 3

Demand 4




Dlstlngmsh between near and far
a SNIIA OS X

Explicitservice (NEAR)
r, = thefractionof thedemandat j thatis suppliedoy thek™ closesfacility siteto j

Implicitservice (FAR)
G, = thefractionof thedemandat j thatis suppliedromafarsite

K;
at. =1 Our demand constraint Ar +G =1
i can be rewritten as: -

The basic idea is that demanwlnll be met, but beyond thdag closest
sitestodemandgz ¢S R2y QG (1y2¢ SEI Oi(f @&
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Depicting GWLF

Demand 1
Source 1 W
Demand 2
Source 2
Demand 3
Source 3
. Demand 4
) . °
Sourcem .
Demandn

FAR: fictitious Source
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We need to ensure that enough
capacity Is built:

ad casy
] |

If enough capacity iBuilt, then we know that FAR assignments can
be honored as well as NEAR assignments

This constraint is redundant for the GWLP: all feasible configuratic
In the original problem must have a capacity to serve all demands
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Now, The model:

n K
Minimize Z=3 a cjd;r, +

j=1 k=1

Cl.lj+1,jd'Gj +é fi Y

J i=1
subject ta
1) meetdemand

K

ar,+G =1 foreachdemand j
k=1

Plusconstraing (2) - (4)

édjq:é.SYi

j=1 i=1
6) modifiednon- negativityandintegerconstrains

5)

O¢r,¢1 foreachj andeachk =1,2,3,...
y.i {01} foreach
0¢G ¢1 foreach

GWAIP

These are ordered costsso
that they matchr,; allocation
variables

Note, the cost oferving
demand fromsome FAR sits
equal to transporting at the
cost of the closest FAR sitejto

(i.e.k +1)

K
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The bottom line:
AOptimal objectiveZ,y, or MK h LJO A Yl 6

AThat is, model GWLP provides a lower bound on

GWLP
A The proof of this is quite simple & is in the paper

AWhen noG variables appear in the solution, the two
objectives are equal and the solution to GWLI
feasible to GWLP s and equal to the lower bound, sc
must be optimalEVEN WHEN SOLVING A SMALLE
INCOMPLETE MODEL
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So, how do you do that?

AStep 1: start with an estimate & values

AStep 2: Set up and solve GWLP

AAre anyG variables positive? If so expand the NEAR set
for those demands and go back to step 1

AAre all G variables equal to zero? If so stop, solution to
GWLPT Is optimal to GWLP

bSEGO || FTS¢g NBadzZ GaxXxXo
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100 city data set: each city is a potential warehouse
location as well as a demand point that needs to be served

NARSC
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100 city data set: all 10,000 links between possible sites and demands
NARSC
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